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Abstract
The Kohn–Sham (KS) equations determine, in a self-consistent way, the particle
density of an interacting fermion system at thermal equilibrium. We consider
a situation when the KS equations are known to have a unique solution at high
temperatures and that this solution is a uniform particle density. We prove that,
at zero temperature, there are stable solutions that are not uniform. We provide
the general principles behind this phenomenon, namely the conditions when
it can be observed and how to construct these non-uniform solutions. Two
concrete examples are provided, including fermions on the sphere which are
shown to crystallize in a structure that resembles the C60 molecule.

PACS numbers: 71.10.−w, 71.15.−m

1. Introduction

We consider a system of N interacting fermions in a finite volume. Since we want to avoid
the surface effects, we actually consider the fermions moving on toruses and spheres, or,
more generally, on a closed Riemann manifold M of finite volume �. According to the
Kohn–Sham theory [1] (and later extensions [2]), the particle density at thermal equilibrium
at a temperature T (β = 1/kT ) is a solution of the following set of equations:

(H0 + Vn)φi = εiφi (1)

n(x) =
∑

i

(1 + eβ(εi−µ))−1|φi(x)|2, (2)

with Vn an effective potential depending entirely on the particle density n and µ determined
from

∫
n(x) dx = N . H0 is the single-particle, non-interacting Hamiltonian. We refer to

Hn ≡ H0 + λVn (3)

as the Kohn–Sham Hamiltonian, where we introduce the coupling constant λ for convenience.
We will neglect the spin degree of freedom.
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There is no closed form of Vn. However, at least for the electron gas, there is a set of
very successful, explicit approximations, which already provide numerical results that are
within the so-called ‘chemical precision’ [3]. Although in this paper we do not use a specific
approximation, we will often make reference to two such approximations in order to check
our assumptions. They are the local density approximation (LDA): Vn = v ∗ n + vxc(n)

(v the two-body interaction), i.e. Vn is the sum between the Hartree potential and a function
of density, and the quadratic approximation (QA): Vn = K ∗ n, i.e. Vn is the convolution of
the density with a certain kernel. The mathematical structure of QA is the same as that of the
Hartree approximation.

In this paper, we are not concerned with the physical and mathematical principles leading
to the KS equations, but rather with the mathematical structure of these equations, in particular
with the question of uniqueness at zero temperature. In other words, we have already assumed
v-representability, picked our approximation for Vn and we are ready to compute the self-
consistent solutions. What should we expect? Well, as already demonstrated (see, for
example, [4]), even for local approximations, we should expect a very rich structure, which
may include multiple solutions, symmetry breaking, etc. While previous studies used purely
numerical methods, here we use group theoretical methods and functional analysis to study
this structure.

Let us discuss first what is known about the KS equations at finite temperature and finite
volume. The notation ‖φ‖Lp stands for

[ ∫
M |φ(x)|p dx

]1/p
and φ ∈ Lp means ‖φ‖Lp < ∞.

Assume the following:

(A1) H0 is self-adjoint, bounded from below; for −a below its energy spectrum, the kernel
(H0 + a)−2(x, x ′) is continuous (with respect to x and x ′) and

ka ≡ sup
x∈M

(H0 + a)−2(x, x) < ∞. (4)

(A2) Vn ∈ L2(M) and w ≡ sup‖Vn‖L2 < ∞, where the supremum is taken over all n in

SN ≡ {n ∈ L1(M), ‖n‖L1 = N}. (5)

As H0 is in general equal to minus the Laplace operator, (A1) is easy to check for one, two
and three-dimensional toruses or spheres. It fails in four and higher dimensions. Since M is
of finite volume, (A1) automatically implies that exp(−βH0) is trace class. (A1) also implies
that ‖f ‖L∞ �

√
ka‖(H0 + a)f ‖L2 . Together with (A2) (easy to verify for LDA and QA

[5, 6]), this leads to

‖Vn(H0 + a)−1‖ � w
√

ka ≡ γa. (6)

Then, Hn is self-adjoint for all n ∈ SN and, as it follows from [5], the Kohn–Sham equations
can be formulated as a fixed-point problem:

Theorem 1. For T > 0, the following map is well defined:

T : SN → SN

SN 	 n → T[n](x) = (
1 + eβ(Hn−µ)

)−1
(x, x), (7)

where µ is the unique solution of N = Tr(1 + eβ(Hn−µ))−1. The fixed points of T generate all
possible solutions of the KS equations.

Many will recognize in equation (7) the usual formulation of the KS problem in terms
of the density matrix. When appealing to the fixed-point theorem, the functional form of the
map T and its domain of definition are equally important. What is new in the above result is
that T is well defined for all densities which integrate to N.
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Apart from complications that may occur at low particle densities and which will not be
addressed here, the following assumption can be easily verified for LDA and QA (see [5, 6]):

(A3) There exists χ < ∞ such that

‖Vn − Vn′ ‖L1 � χ‖n − n′‖L1 , (8)

for any n, n′ ∈ SN .
If (A1)–(A3) are satisfied, then there exists κ , which is a function of λ, such that [5]

‖T[n] − T[n′]‖L1 � κ‖n − n′‖L1 , (9)

on the entire SN . For λ smaller than a critical value λc, T becomes a contraction and,
consequently, it has a unique fixed point. If the constants can be chosen independent of
temperature in (A1)–(A3), it is not hard to show that λc increases with temperature. In other
words, if λ is kept fixed, (A1)–(A3) (and the fact that � is finite) guaranties the existence of a
unique fixed point of T at high temperatures.

Let us end the finite-temperature case with a few remarks. For an exact Vn, the existence
and uniqueness, at any finite T, will follow from the convexity of the functional [7], provided
that the equilibrium density can be written as in equation (2) (i.e. is v-representable). In
practice, we do not have the exact Vn and v-representability has not been yet proved or
disproved. Also, in the thermodynamic limit, where systems can have multiple coexisting
phases, the issue of uniqueness becomes more delicate and definitely there are many opened
questions here. Thus, the question of existence and uniqueness in the finite-temperature
Kohn–Sham equations is not trivial.

The situation at zero temperature is more delicate. The density now becomes n(x) =∑ |φi(x)|2 where the sum goes over the lowest N energy states of Hn. If the last occupied
energy level is degenerate and only partially occupied, there is an ambiguity in defining n(x).
In this paper, we deal exactly with this situation.

Let us assume that that there is a continuous group Gc acting ergodically on M and
preserving the Riemann structure. On torus or sphere, this group will be simply the translations
or rotations. Let us consider the natural unitary representation of Gc in L2(M):

Gc 	 g → ĝ, (ĝf )(x) = f (gx). (10)

We assume that H0 commutes with all ĝ and that every symmetry of the particle density is
automatically a symmetry of the effective potential:

(A4) If n(gx) = n(x), then Vn(gx) = Vn(x) (equivalently ĝVnĝ
−1 = Vn).

This assumption can be easily verified for LDA and QA. Besides other things, (A4) implies
that Vn is a constant if n(x) is uniform, and we can fix this constant to zero. In other words, the
Kohn–Sham Hamiltonian reduces to H0 if n(x) = n̄ (n̄ = N/�). Then, it is trivial to show
that, at any finite temperature, n̄ is a solution of the KS equations. With our assumptions, we
also know that this is the only solution at high temperatures. At zero temperature, assume
that, if we populate with N particles the energy levels of H0, from smaller to higher energies,
we end up with N0 particles on the last occupied energy level, assumed d-fold degenerate with
d > N0. We refer to this level and its energy as the Fermi level and Fermi energy ε0

F . If we
can find N0 states at the Fermi level so as to generate a uniform particle density, then n̄ is a
solution of the KS equations. If there is no such combination of states, then either there is no
solution, the solution is not uniform or we need to consider fractional occupation numbers.
We will not discuss here the last possibility, but rather concentrate on the T → 0 limit of
equations (1) and (2).

We now show when and how the non-uniform solutions can be found. We look for a
finite subgroup G of Gc, which has to satisfy two simple conditions. We index its irreducible
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representations by 	 and use the symbol |	| to specify their dimension. Let P	 denote the
projectors

P	 = |	|
|G|

∑
g∈G

χ	(g)ĝ, (11)

with the following properties,

P	P	′ = δ		′ ,
∑

	

P	 = I. (12)

Above, |G| denotes the cardinal of G and χ	(g) the character of g in the representation 	.
Let HF denote the eigenspace of H0 corresponding to ε0

F . This space is invariant to Gc and
it decomposes according to the irreducible representations of G: HF = ⊕iP	i

HF . The sum
goes only over those 	 for which P	HF �= 0. In general, dim P	i

HF = ni |	i |, where ni is the
number of representations 	i on HF . The subgroup G we look for must satisfy the following:

(A5) dim P	i
HF = |	i |, i.e. we have irreducible representations of G in each P	i

HF .
(A6) |	i | = N0 for some i (we rearrange so that i = 0).

Now let n0(x) be the particle density when we populate all the states of H0 below ε0
F plus

the N0 states in P	0HF . Since we assumed that dimHF > N0, n0(x) is not uniform. The last
condition is on the effective potential:

(A7) If V	i
≡ 〈

φ0
	i

, Vn0φ
0
	i

〉
with φ0

	i
any norm one vector from P	i

HF , then

V	i
− V	0 > 0, for all i > 0. (13)

If the subgroup G satisfying (A5), (A6) exists and the effective potential satisfies (A7),
then, at least for small λ, the zero-temperature KS equations have a non-uniform solution,

n(x) = n0(x) + o(λ). (14)

This is our main result.
We end our long introduction with a discussion of conditions (A5)–(A7). Assumption

(A5) greatly simplifies our proof, but it is not essential (though we do not have a proof without
(A5)). (A6) assures the closed shell condition and is essential. It can be relaxed, for example,
we can have two completely filled shells. However, we believe that, in the ground-state
configuration, all N0 particles occupied the same (lowest) energy level.

Condition (A7) refers to the effective potential and it requires, quite naturally, that the
level populated by the N0 particles to have the lowest energy (in the first order in λ). We
believe (A7) is essential. Now, even if we find the correct G, (A7) may not be satisfied,
since there is a competition between the Hartree and exchange-correlation potentials. For
repulsive interactions, the exchange-correlation potential must dominate the Hartree potential
(see equation (46)). This is why the electrons crystallize at low densities. For attractive
interactions (such as the Lenard–Jones fermions) it is vice versa, the Hartree term has to
dominate the exchange-correlation.

To conclude, (A5), (A6) determines the crystal structure and (A7) determines the
conditions, like the range of densities, in which this structure is stable.

2. The proof

The idea behind our proof is the following. We restrict the search for n(x) to the densities
that are symmetric relative to G, and in a small vicinity of n0. Under the action of Vn, the
Fermi level splits into sub-levels, and for λ small enough, we show that, for all densities in



Symmetry breaking in the self-consistent Kohn–Sham equations 5651

ε+ε0 ε- εF
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Figure 1. If ε0 and ε∓ denote the ground state and energy levels below/above ε0
F of H0, then, at

small λ, the spectrum of Hn (n ∈ SN) is contained in the hachured region of the real axis, where:
�ε0 = λγa(ε0 + a),�ε− = λγa

1−2λγa
(ε− + a), �−εF = λγa(ε

0
F + a), �+εF = λγa

1−2λγa
(ε0

F + a)

and�ε+ = λγa(ε+ + a). We define I as the hachured region corresponding to some small, fixed λ̄

and always consider λ < λ̄.

this vicinity, there are exactly N states below ε0
F . This allows us to define, for any such n,

the density n′ corresponding to the potential Vn, i.e. a map T : n → n′. The self-consistency
means n′ = n, i.e. n is a fixed point for T. To show that T has a fixed point, we prove that this
small vicinity around n0 is mapped into itself by T and that T is a contraction.

To define the space L1
sym of G-symmetric densities precisely, we consider the isometries

Tg : L1(M) → L1(M), (Tgn)(x) = n(gx), (15)

and define

L1
sym ≡

⋂
g∈G

Ker(Tg − I ). (16)

It is important to note that L1
sym is a closed subspace of L1(M). Since the solutions of the KS

equations are not affected if we add a constant to Vn, we can assume without losing generality
that V	0 < 0, V	i

> 0 for i > 0 and mini>0 V	i
= |V	0 |.

Theorem 2. Let us consider the closed subset of L1(M),

SN,ε
sym ≡ {

n ∈ L1
sym, ‖n‖L1 = N, ‖n − n0‖L1 � ε

}
. (17)

Then, for ε and λ small enough:

(i) The following map is well defined

Tε : SN,ε
sym → SN,ε

sym , Tε[n](x) = P <
n (x, x), (18)

where P <
n denotes the spectral projector of Hn onto the spectrum below ε0

F

(excluding ε0
F ).

(ii) Tε has one and only one fixed point.
(iii) This fixed point is a solution of the KS equations.

Proof. (i) Let us show first that Tε takes SN,ε
sym into L1

sym. Since we exclude ε0
F , P <

n is well
defined for all n ∈ SN,ε

sym and can be determined from the resolvent of Hn. Also, (A1), (A2)
guaranties that the kernel of P <

n is continuous, thus its diagonal is well defined. From (A4),
Hn and consequently P <

n commutes with all ĝ, g ∈ G, for all n ∈ SN,ε
sym . Then

Tε[n](gx) = P <
n (gx, gx) = (

ĝP <
n ĝ−1)(x, x) = Tε[n](x). (19)

Next, we show that Tε takes SN,ε
sym into SN . For this, we need to show that Hn has exactly

N states below ε0
F , for all n ∈ SN,ε

sym . For λ small, a first, rough location of the spectrum can
be obtained from equation (6). An elementary argument will show that the spectrum of Hn

is always located inside the set I defined and shown in figure 1. We now investigate the
splitting of the Fermi level. For any n ∈ SN,ε

sym , the Fermi level will split into sub-levels, each
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εF

E

γ γ ′

∆ ∆

Figure 2. The two contours, γ and γ ′, surround the states below ε0
F and the states split from the

Fermi level, respectively, such that the distance from any point on the contours to I is equal to
some � > 0.

corresponding to the different irreducible representations 	i (see (A5)). The energy of any
such level can be computed as

E	(n) = 1

|	| Tr P	

∫
γ ′

z(z − Hn)
−1 dz

2π i
, (20)

with γ ′ the contour described in figure 2. Simple manipulations lead to

E	(n) = ε0
F + λ

〈
φ0

	, Vnφ
0
	

〉
+ λ2β	,λ(n), (21)

with φ0
	 any norm one vector from P	HF and

β	,λ(n) = 1

|	| Tr P	

∫
γ ′

z(z − H0)
−1Vn(z − Hn)

−1Vn(z − H0)
−1 dz

2π i
. (22)

We have an upper bound, β	,λ(n) � β̄, with β̄ independent of 	, λ or n:

β	,λ(n) � 2
∫

γ ′
|z|‖(z − H0)

−1Vn(z − Hn)
−1Vn(z − H0)

−1‖ |dz|
2π

� 2γ 2
a

�

∫
γ ′

|z|
(

1 +
|z + a|

�

)2 |dz|
2π

. (23)

Note also that 〈
φ0

	, Vnφ
0
	

〉 = V	 +
∫ [

Vn(x) − Vn0(x)
]∣∣φ0

	(x)
∣∣2

dx. (24)

Using the eigenvectors expansion of (H0 + a)−2, one can derive∣∣φ0
	(x)

∣∣2 �
(
ε0
F + a

)2
ka, (25)

leading to ∣∣〈φ0
	, Vnφ

0
	

〉 − V	

∣∣ �
(
ε0
F + a

)2
kaχε. (26)

Returning to equation (21), it follows from equations (23) and (26) that E	0 < ε0
F and E	 > ε0

F

for 	 �= 	0, as long as

ε <

∣∣V	0

∣∣ − λβ̄(
ε0
F + a

)2
kaχ

. (27)

The last thing we need to prove is that, for λ small enough,

‖Tε[n] − n0‖L1 � ε, (28)

for any n in SN,ε
sym and ε satisfying equation (27). Let us consider

Ẑ[n] =
∫

γ

(z − Hn)
−1 dz

2π i
+ P	0

∫
γ ′

(z − Hn)
−1 dz

2π i
, (29)
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defined on the entire SN . Based on the previous results, we observe that P <
n = Ẑ[n] for

n ∈ SN,ε
sym , with ε satisfying equation (27). Also, note that n0(x) = Ẑ[n̄](x, x). Moreover, if

‖‖1 denotes the trace norm,

‖Ẑ[n] − Ẑ[n′]‖1 � λαχka

(1 − λγa)2
‖n − n′‖L1 , (30)

with

α =
(∫

γ

+
∫

γ ′

)(
1 +

|z + a|
�

)2 |dz|
2π

. (31)

Indeed, let

B ≡ (H0 + a)−1(Vn − Vn′)(H0 + a)−1, (32)

and ga,z(t) ≡ (t + a)/(z − t). After simple manipulations,

Ẑ[n] − Ẑ[n′] = λ

(∫
γ

dz

2π i
+ P	0

∫
γ ′

dz

2π i

)
ga,z(Hn)

× (1 + λ(H0 + a)−1Vn)
−1B(1 + λVn′(H0 + a)−1)−1ga,z(Hn′) (33)

and note that

‖ga,z(Hn)‖ � 1 +
|z + a|

�
, (34)

for all n ∈ SN and z ∈ γ or γ ′. We can conclude at this step that

‖Ẑ[n] − Ẑ[n′]‖1 � λα

(1 − λγa)2
‖B‖1. (35)

If we use the polar decomposition �V = S|�V | of �V ≡ Vn − Vn′ , and define
A ≡ |�V |1/2(H0 + a)−1, then from equation (32)

‖B‖1 = ‖A∗SA‖1 � ‖A∗‖HS‖SA‖HS � ‖A‖2
HS, (36)

and

‖A‖2
HS =

∫
|�V (x)|(H0 + a)−2(x, x) dx � kaχ‖n − n′‖L1 . (37)

With equation (30) proven, we can easily end the proof of (i). Indeed, for all n ∈ SN,ε
sym ,

‖Tε[n] − n0‖L1 = ‖Ẑ[n](x, x) − Ẑ[n̄](x, x)‖L1

� ‖Ẑ[n] − Ẑ[n̄]‖1 � λαχka

(1 − λγa)2
‖n − n̄‖L1 (38)

and

‖n − n̄‖ � ‖n − n0‖ + ‖n0 − n̄‖ � ε + 2N0. (39)

Thus, equation (28) is true if

λαχka(2N0 + ε)

(1 − λγa)2
� ε (40)

and we remark that equations (27) and (40) can be simultaneously satisfied if λ is small
enough.

(ii) Observe that if we take λ small so as to satisfy equation (40), then

λαχka

(1 − λγa)2
< 1. (41)
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Then Tε is a contraction, since P <
n and Ẑ[n] coincide on SN,ε

sym and

‖Tε[n] − Tε[n′]‖L1 � ‖P <
n − P <

n′ ‖1

= ‖Ẑ[n] − Ẑ[n′]‖1 < ‖n − n′‖L1 . (42)

Since Tε is a contraction on a closed set, it must have one and only one fixed point.
(iii) It follows immediately if we express P <

n in terms of the eigenvectors and note that,
at a fixed point, n(x) = P <

n (x, x):

Hnφi = εiφi, n(x) =
∑
εi<ε0

F

|φi(x)|2. (43)

Together with
∫

n(x) dx = N , the above equations are exactly the KS equations at zero
temperature. �

3. Examples

We consider first one of the simplest examples possible: 2N particles on a circle of length
a. The Kohn–Sham Hamiltonian is Hn = −∂2

x + Vn, where x is the coordinate along the
circle. The ground state of H0 ≡ −∂2

x is non-degenerate, while all the excited states are
doubly degenerate. Thus, if we populate the states of H0 with 2N particles, we end up with
one particle occupying a double degenerate energy level, containing the states a−1/2 eikF x and
a−1/2 e−ikF x

(
ε0
F = k2

F

)
.

We now go over the constructions considered in the previous section. The continuous
group Gc are the rotations of the circle and the subgroup G can be taken as the identity plus
the reflection r : x → −x. There are two, one-dimensional irreducible representations of
G,χ±(r)t = ±t . The projectors P	 (	 → ±) are simply given by

(P±f )(x) = 1√
2
[f (x) ± f (−x)]. (44)

They decompose HF in the invariant, one-dimensional spaces

P+HF =
{√

2

a
cos kF x

}
, P−HF =

{√
2

a
sin kF x

}
, (45)

each of them providing an irreducible representation for G. Either one of the (±)

representations can choose as 	0 in (A6). We choose the (+) representation, in which case,
n0(x) = n̄ + a−1 cos(2kF x) and condition (A7) reads∫

Vn0(x) cos(2kF x) dx < 0. (46)

In LDA, if we approximate vxc(n0)  vxc(n̄) + v′
xc(n̄)(n0 − n̄), equation (46) reduces to

v̂(2kF ) + v′
xc(n̄) < 0, (47)

where v̂ is the Fourier transform of the two-body interaction. For QA, equation (46) simply
means K̂(2kF ) < 0. We will be led to the same conditions on the effective potential if we
choose 	0 to be the anti-symmetric (−) representation.

Similar examples can be given for toruses in higher dimensions. We, however, consider
the case of fermions on the 2D sphere and show that we can obtain the molecular structure
of the C60 molecule. In the C60 molecule, the carbon atoms sit at the points of intersection
between an icosahedron and dodecahedron as shown in figure 3(a). There are single and
double bonds between the carbon atoms. Since the double bond is much stronger than the
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(a) (b)

Figure 3. (a) The molecular structure of the C60 molecule. The small spheres represent the carbon
atoms. The double bonds are indicated by segments joining two atoms. (b) A contour plot of the
density n0(x) defined in the text. The dark/lighter regions correspond to high/low densities.

single bond, we consider C=C as being the building blocks of the C60 molecule. In total, there
are 30 double bonds and some of them are shown in figure 3(a). We consider then 30 point
particles (of course, we tried 60 particles with no success) on a sphere of radius R, described by
the Kohn–Sham Hamiltonian Hn = −R−2 �L2 +Vn, where H0 = −R−2 �L2 is the kinetic energy
of a particle on the sphere. The energy levels of H0 are simply R−2l(l + 1), l = 0, 1, . . . , and
if we populate them in order, we end up with 5 particles on the l = 5 level. The continuous
group is O(3) and we can take the proper icosahedral group as the finite subgroup G. Indeed,
under its action, the Fermi level decomposes as

HF = Hu ⊕ T1u ⊕ T2u, (48)

i.e. in a five-dimensional space plus two three-dimensional spaces (of different symmetries).
Thus, the proper icosahedral group satisfies (A5), (A6) with 	0 = Hu. Then, if the effective
potential satisfies (A7) (which we expect to happen for certain radii R), the Kohn–Sham
equations for the 30 particles on the sphere have a stable solution n(x) = n0(x) + o(λ), where
n0(x) is obtained by populating all l < 5 levels plus the 5 states with l = 5 and Hu symmetry.
This density is shown in figure 3(b) and the resemblance with the C60 molecule is evident.

We end this section with a discussion of the numerical results of [4] on 2D electrons and
a completely deformable jellium, whose electrostatic potential cancels exactly the electrons’
Hartree potential. This system is described by the Kohn–Sham Hamiltonian:

Hn = −� + v̄xc(n), (49)

where v̄xc(n) is an effective 2D exchange-correlation potential (treated in the local density
approximation). From the beginning, we should mention that this system does not fall in
our category. We discussed here systems that are confined in finite volumes and the small
coupling constant regime. In equation (49), the electrons are free to move in the entire two-
dimensional space. The only confining potential is their own exchange-correlation potential.
Since this potential needs to bind these electrons, we cannot talk about the small coupling
limit. However, we will show that our analysis still applies. We mention that a group analysis
of the symmetry breaking in small parabolic quantum dots was already carried in [8].

The self-consistent numerical solutions of equation (49) showed the following: there is a
first class of stable crystals, which have pure shapes, such as triangles, squares and circles, and
there is a second class with apparently no regularity in the shape. We discuss the crystals with
pure shape, where the symmetry group is easy to recognize, and the case when the electrons
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are paired and the spin degree of freedom is not important. Clearly, for the triangle-shaped
crystals, the symmetry has been broken to G = C3v, the group that sends an equilateral triangle
into itself. For the square ones, G = D4v , the group that sends a square into itself. In [4], it was
found numerically that crystals with 8 and 10 particles prefer the square geometry. Let us show
how one can predict this. We first guess a good density n(0), which is a uniform density inside
a square. n(0) will create a constant, (strongly) negative potential inside the square and the
electrons will behave, more or less, like they are confined within hard walls. The eigenstates
for this system are ψnm(x, y) = 2

A
sin(nπx/L) sin(mπy/L) (L the size of the square and

A = L2). The lowest energy state is ψ11. The first excited state is double-degenerate and
corresponds to ψ12 and ψ21: C4v acts irreducibly on this space. The third excited state is
non-degenerate and corresponds to ψ22. The fourth excited state is again double degenerate
and corresponds to ψ13 and ψ31: under the representations of C4v , this level decomposes into
two invariant, one-dimensional spaces (symmetric and anti-symmetric combinations of ψ13

and ψ31). Thus, with eight particles, we can populate the first three levels and have the closed
shell condition. Thus, the self-consistency can be achieved without further reduction of the
symmetry. If we write H0 = −� + v̄xc(n

(0)), we reduced the Kohn–Sham Hamiltonian to
Hn = H0 + Vn, where H0 describes, more or less, free electrons confined in the square and
Vn = v̄xc(n) − v̄xc(n

(0)) can be considered small. The density n0 of our theorem is given by
populating the first three energy levels of H0 and proving the existence of a self-consistent
solution near n0 may be accomplished now with the methods developed in this paper. The
self-consistent field will split the fourth energy level, so we can accommodate another pair of
electrons without breaking the symmetry, i.e. the crystal with 10 electrons should also have
square symmetry. Examining either figure 2 or the inset of figure 3 (where one can see the
splitting of the second energy level) in [4], it follows that, in reality, there is a slight deviation
from the D4v symmetry.

4. Discussion

We can summarize our procedure as follows (hopefully this can be seen in the above examples):
in the first part, one looks for n0, which must be a good approximation of the self-consistent
density. The main goal is to fulfil the closed shell condition and group theoretical methods can
be used to accomplish that. After n0 is found, one can construct the map T in a neighbourhood
of n0. In the second part, one investigates if T is indeed a contraction near n0. For small λ,
the conditions in which this is true are already given here. How large this λ can be depends
on Vn and its derivative near n0.

One important remark is that some of these non-uniform solutions can be found only if
we start the iteration close enough to them. The reason is that the basin of attraction of the
map T may be small (note that the usual iterative process of solving KS equations consists
exactly of constructing the sequence n0, T[n0], . . . , Tm[n0], etc). For this reason, there may
be additional isomers to the ones found in [4].

As opposed to the Jahn–Teller effect [9] or Pierls instability [10], which involves discrete
symmetries and the electronic degeneracies being lifted by a displacement of the atoms,
the symmetry breaking discussed here involves a continuous group and is due solely to the
electron–electron interaction, which lifts the electronic degeneracies without any change in
the external potential. The Jahn–Teller and Pierls instabilities may be triggered (but not
necessarily) by the instability we discussed here.

Our analysis does not rule out the existence of more than one self-consistent solution of
the KS equations. The lowest energy configuration is, of course, associated with the ground
state, and the higher energy configurations should be associated with excited states. In [7],
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the authors find that indeed, since the energy functional Ev[n] is not convex, Ev[n] may have
additional extrema, which are excited-state densities.

Degeneracy and symmetry breaking in DFT are well-studied concepts in density functional
theory [11, 12], and there are many numerical studies on the subject. In fact, the modern
theory of freezing [13], which can be traced back to the pioneering work of Ramakrishnan
and Yussouff [14], is based on the assumption that the liquid–solid transitions occur because
of a bifurcation of the same type as we discussed here. More exactly, the density of the solid
ns is computed self-consistently as the linear response of the uniform liquid density nl to the
introduction of a density change �n = ns − nl . In the current state, the procedure cannot
predict the lattice symmetry, but rather assumes that the linear response equation has a non-
uniform solution, with a prescribed crystalline symmetry (usually known from experiment).
Applied to quantum liquids, this procedure is equivalent to solving the Kohn–Sham equations
in the quadratic approximation. One can find in [15] an impressive numerical demonstration
of the Wigner crystallization of the electron liquid. For finite systems, we already mentioned
[4, 8]. We add [16, 17].

We also want to mention that Bach et al [18] have shown that, for any repulsive interaction,
the energy levels are always fully occupied in the unrestricted Hartree–Fock approximation.
This result automatically implies that there must be a symmetry breaking whenever the last
occupied level of H0 is only partially populated. In contradistinction, reference [19] showed
that, within the Hartree approximation (1D), there is always a symmetry breaking for short,
attractive interactions. This definitely shows that we have to go beyond the two approximations.

At the end, we want to mention that we have partial but interesting results in the
thermodynamic limit and we are currently considering the finite-temperature regime. We
are also looking into the spin case, when the Kohn–Sham equations become self-consistent
equations for the density n(x) and magnetization vector �m(x).
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